Diffusion at the liquid-vapor interface.

نویسندگان

  • Daniel Duque
  • Pedro Tarazona
  • Enrique Chacón
چکیده

Recently, the intrinsic sampling method has been developed in order to obtain, from molecular simulations, the intrinsic structure of the liquid-vapor interface that is presupposed in the classical capillary wave theory. Our purpose here is to study dynamical processes at the liquid-vapor interface, since this method allows tracking down and analyzing the movement of surface molecules, thus providing, with great accuracy, dynamical information on molecules that are "at" the interface. We present results for the coefficients for diffusion parallel and perpendicular to the liquid-vapor interface of the Lennard-Jones fluid, as well as other time and length parameters that characterize the diffusion process in this system. We also obtain statistics of permanence and residence time. The generality of our results is tested by varying the system size and the temperature; for the latter case, an existing model for alkali metals is also considered. Our main conclusion is that, even if diffusion coefficients can still be computed, the turnover processes, by which molecules enter and leave the intrinsic surface, are as important as diffusion. For example, the typical time required for a molecule to traverse a molecular diameter is very similar to its residence time at the surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A More Accurate Prediction of Liquid Evaporation Flux

In this work, a more accurate prediction of liquid evaporation flux has been achieved. The statistical rate theory approach, which is recently introduced by Ward and Fang and exact estimation of vapor pressure in the layer adjacent to the liquid–vapor interface have  been used for prediction of this flux. Firstly, the existence of an equilibrium layer adjacent to the liquid-vapor interface ...

متن کامل

Investigating the Effects of Mass Transfer and Mixture Non-Ideality on Multiphase Flow Hydrodynamics Using CFD Methods

A numerical framework has been proposed to model the interacting effects of mixture non-ideality and mass transfer on hydrodynamics of a multiphase system using CFD methods.Mass transfer during condensation and vaporization is modeled by chemical potential at the liquid-vapor interface. Species mass transfers are related to the diffusion at the interface which in turn is related to the conc...

متن کامل

Numerical Study of Spherical Vapor Layer Growth Due to Contact of a Hot Object and Water

Vapor film formation and growth due to contact of a hot body and other liquids arise in some industrial applications including nuclear fuel rods, foundry and production of paper. The possibility of a steam explosion remains in most of these cases which could result in injuries and financial damage. Due to the importance of such phenomenon, this study deals with vapor layer forming, growth, and ...

متن کامل

Thermodynamics and Kinetics of Vaporization of Pbs From Complex Cu-Fe Mattes

Thermodynamics and kinetics of vaporization of lead sulfide from typical copper-smelting mattes of commercial interest are investigated in the temperature range 1388 K to 1573 K by vapor transport technique and plasma arc spectroscopy. The total mass of the dominant vaporizing species PbS that leaves the matte is described by the Newman's numerical solution to the second Fick's law combined wit...

متن کامل

Liquid-metal-mediated homoepitaxial film growth of Ge at low temperature

We demonstrate liquid-metal-mediated homoepitaxial crystal growth of Ge on Ge( 111) at temperatures in the range of 400-450 “C. Crystal growth proceeds by diffusion of Ge through a liquid layer, followed by precipitation onto the substrate by the vapor-liquid-solid mechanism. The liquid-metal phase at the interface is a Au-Ge alloy formed by initial deposition of a thin Au layer above the eutec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 13  شماره 

صفحات  -

تاریخ انتشار 2008